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As 1s known, the one-dimensional combustion process of a gas milxture 1s de-

scribed by a nonlinear system of partial differential equations of the form
au J [ au ac a ac
m"mazb<m:§ﬂ+‘“”a ‘m‘*a;PvUTmﬂ—F“”C ©.1)

FU)=0, w0, U, FU)>0, U U

Here U 1s the mixture temperature, ( > O the concentration of active sub-
atance, F(U)C the reaction rate, u(vi > O the coefficient of heat conduction,
a, (U} > O the coefficient of diffusion,

Let us seek the solution of a special kind of system, called stationary
U=u(y), C=c(y), y=a-+i, i=const>>0
which satisfies the conditions
u(— o)< uly) <u(x), cf{—oc)>cly)>c(ex)
The system (0.1} hence becomes
du d du de d de o
A rn =3 Ez}—[a(u) @J-{-F(u)c, 7\.'3;‘ = -;b-{al {u) —Jy—]-—F(u)'c 0.2)

It 1s easy to prove that u'(y) > O for all g Let us prescribe the following
conditions for the solution of the system (0.2):

u{—oo) =0, ¢ 00)=c<>0, cloo)=70

It follows from the existence of u(® =) and o{Z =) that o(* =) = '} =)
= O if the latter exist. We have from (0.2)

Me@) + u(y) — co— u(— o00)] =a (u) du/dy -+ o, (u) dc/dy
Hence, in turn

¢ (— 00) - u (— 00) = ¢ (00} + u(o0), for u(o0) =1, =co
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Solution of the system of equations of the theory of combustion hy7

Taking into account that y' > 0, we take y as 1independent variable. Let us
introduce the notation

v(u) =a(uWdu/dy >0, a(u)F(u)=f()
fW)>0, u>u, (=0, uec|[0,y), & (u/oy(u)=Pp@u)>0 (0.3)
Consequently, the system (0.2) becomes

fue voo¢ =B(u)[%(c—l—u—u)—i] (0.4)

v
with the conditions v(0) = 0, v(u,) = o{u,) = O.
Since f (1) = 0, u € [0, uy], the latter 1s then equivalent to

v (up) = Auy (0.5)

It 18 required to determine o(u) and v(u) in [0, u,] (thereby u(y) and
o(y) will be determined to the accuracy of a parallel transfer along the y-
axls as well as the constant i

The existence of a solution of the system (0.4), (0.5) has been proved in
[2) in the particular case of g({u) = const. It has also been proved that the
solution of this system 1s unique for g(u) = const > 1. The question of u-
niqueness in the general case therefore remauins open. Another particular case
with g = 1 reduces the system (0.4), (0.5) to the single equation considered
in [1) (where the existence and uniqueness of the solution was proved), and
also in [3 and 4].

In this connection, the assumption existed that the system (0.4), (0.5)
has a unique solution for any f(u) and g(u) satisfying the constraints (0.3)
By constructing a contradictory example, it 1s proved herein that uniqueness
even may not hold despite compliance with (0.3).

Let us assume that for some combination of values uo, 4, &nd the functions
I(u), g{u) the system (0.4), (0.5) has two solutions v,tu), e (u) (¢ =1,2).
Let us introduce the notation

a (u) = ¢y (1) / ¢y (w), (0.6)

b (u) = vy (u) / vy (u) (0.7)

for unemgu., u,).The values of a(u,) and »{u,) are determined by a passage to
the t.

Let us find f(u), p(u) and u, in terms of ug, Ay, Ag, &{u), ®(u). To do
this let us first form a system of differential equations to determine v, (u),
u, and o, (u) in terms of uo, Ay, Aaz, 2(u), d(u). To do this let us first form
a system of differential equatione to determine v, (u), u, and o,(u) in terms
of g, Xy, Az, 6(u) and 2(u). After transformation we have from{0.6) and (0.7)

» =A—

o a'cy[M{an+u—u,)—ov]b
1= (M— Mb) ac; + (he — Mab)u —u,)+ (a— 1) by

(0.8)

As will be proved below, (0.7) has singular points, which precludes assign-
ment of the initial condition. From (0.6) and (0.5) follows
b (u) = An/ 1 U E looucl-

Ividently the function b(u) is continuously differential in (0, u,). Therefore,
1'(uy) = 0, We have d(y) > 0 in [0, u,). Substituting both the assumed solu-
tions into (0.4), eliminating f(u) and utilizing (0.6), we obtain

(A —v2) v, C3

Ga—or)oy o = a(u), u & (uo, ) (0.9)

Hence, according to (0.6) we obtain an equation to determine v, (u)

, bb’ aly — blg b (v —
w=, 5 v —Elq:'b_z_ v ()=l for VY — Ay = -*‘lla—_f‘b;t—ﬂl) (0.10)

Evidently (0.8) may be solved independently of (0.7). From (0.%), (0.3)
ang :lsg the constraints imposed on ofu) and v(u) it follows that v, ' — i,
< hat 1s
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bvy— Aa + bA
Y <o (041

Now let A1, Aq. a (u), b (u), u € {uy, =) be assigned in advance, but not ob-
tained as a result of solving (0.%), (0.5). Moreover, as before, is pre-
scribed. Solving (0.7) (0.8), we can obtain v, (u), u,, o, (u) and f(u) and
g(u) in terms of them. The following conditions should hence be satisfiled:

1) v, (u) should vanish at least for u > uo . The point of intersection
with the horizontal axis nearest to ug will be taken as u,, after which the
segment (u,, =) 18 excluded from the considerations.

2) At least one continuous solution of (0.8), which vanishes at y = u,,
should exist in [ue, u,}.

3) The f(u) and g(u) obtained should be continuous, differentiable, and
satisfy the conditions f(up) = 0, f(u) > O for u & (u,, u,l.

As regards the semi-interval [0, uo), f(u) = O has already been determined
therein; any positive function differentiable in [0, w,) a8 well as the junc-
ture point y = y, may be taken as g(u). .,

The functions c(u¥ and ®(y) are constructed in Section 1; v, (u) 1is deter-
mined in Section 2 and the existence of u, 1s proved; in Section 3 1t is

roved that v, - A, < 0 in (uo, u,], which 18 necessary to the proof for J
fu) being posltive in this semi-interval; o, (u) 12 determined in Section 4.
The equation (0.7) has twn singular points, one of which 18 (u,, 0), in the
o,u plane. The existence of a single integral line passing through both sin-
gular points 1is proved. It is proved that c{(u) < 0 points of the mentioned
line. This 1s used to prove that g(u) 1s positive.

1, %et us establish the sufficient conditions which should be imposed
on J(u) and 8(u) in order that the listed requirements be satisfied. Let us
take an arbitrary u, > uo and let us construct any twice continuously differ-
entiable function btu) in [uo, u,) which will satisfy the following condi-
tions:

b(ug) =g/, B (ug+0)=0, ¥ (<0, u&(upwy) * (1.1)
B (uy — 0 =0, b(y) e (0,A/1)
Further, let us select an arbitrary B &€ (At/As 1) and let us construct

any twice continuously differentiable function ®(u) in (u,, =), which will
satisfy the conditions

b(u1+0)=b(u1), b'(u1+0)=0, b”(u1+0)=b”(u1—0), ,,l,_i:lob(u):B

o<r@<®EE,  ue@m, 1.2)

Evidently, a function b(y) satisfying the last inequality and at y -~ =
tending to any value greater than »(u, ), (in paerticular to the selected B),
may be chosen. The possibility of satisfying the remaining conditions 1is ev-
ident.

Let us also construct some twice continuously differentiable runction a(u)
in (4o, uy ), which will satisfy the following conditions

s el y) cme(ow mhEy) c@>0 @

u & [u, u1), a'(u1—0)=0, a”"(uyy—0)<0
Let us chose an arbitrary
A € (max {1, a (u)) b (uy) B}, BAy [ Ay)

Let us construct some twice continuously differentiable function a(u) in
(u;, =), which will satisfy the following conditions

a(y+0=a(m) & (+0=0  a (4+0) =a"(u—0

A
e (u) L0, ue(y, o), Jirgoa (u) = A4, a(u) < Bo(w) u & [uy, oo) (1.4)
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The existence of functions satisfying the first four conditions of (1.4)
is obviocus. Moreover, 1t follows from the above that:

ACAIBL M A <APIAE < a(m)

Hence, the existence of functions satisfying the fifth condition of (1.4%)
results, The possibility of also satisfying the last condition of (1.4} fol-
lows from the fact that the function 4/pb(u} decreases monotonously as y
changes from uy to ® respectively

A A4 A
from m;3>a(ul) to m——ﬁ*}A:a(o‘o)

It follows from the construction of the functions a{u) and »{u) that both
are twice continuously differentiable in [u,, =), and particularly at the
point u,, where the matching has been made.

Let us prove the existence of an h > 0 such that the inequality

afuy — b (W>h (£.5)

is valid for the constructed functions a(y) and d{u) 1in [uq, «)
Let y & [uy u;].  Then it follows from (1.1) and (1.3) that:

Az \2
@ () = B2 (u) > 0 (o) — b (0) = (o) — 12 >0

Now, let ¥ & (#, ). ., Then it follows by virtue of (1.2) and (1.4) that
:(g) ? ﬁas u) > A — F > 0. Putting n = min{a{u,) - €xs/M\ )%, 4 — PP}, we ob-
ain (1.5).
Moreover, let us prove the existence of an §F > 0 such that for all
u & [uy, oo}

a(u) — b%u) < H (1.6)
In fact, the function a{u) takes on its maximum value at u = u,, and >{(u)

its minimum, Therefore, a{y} — »®{u) < a(u,) — »*{u,).
Putting # = a{u, ) — b:,('h ), we obtain ’(1.6). Let us also note that

b <A /My, uuy, a(W)>1, u>u, WL, umwy (1.9)

2. Bx constructing a{u) and 5(u), u & [uy, o), in this manner, we deter-
mine v, (u} from (0.9) under the initial condition v, (uo) = A uo

2.4

mW=XwWYE (X =exp

Fe3g

u
by’ Aa — Agb
by > ds,Y(u)=S ('a"_l‘_‘_Tz)‘Xa"(';T)dS-F Muo)
Uy

h:.et us prove the existence of a p > 0 such that for all u & [ug, o)
we have
X <p (2.2)

Let u & [uy, u]. By virtue of {1.1) and (1.5) we have ¥'{u) s 0. Hence,
X(u) = x{uo ). Now, let u & (uy, 00) Then .

u
bb’
X (u) = X (u;) exp S 75 8 < X () exp '2-1,,— [6% (u) — b2 ()] <
Uy

1
< X (w) exp 55 [B* —b* ()]
Putting

1
p = max {X (u0), X (w1) exp o [B*—b? (u.,)]}
we obtain (2.21. Taking into account that r'{u} > O for u > u,, we obtain the

existence of r(«). Let us note that since we have X,6 — Agb > A, a(up) ~ Agd
Uo) > 0 for u & [u, u,] » then v;{u) > 0 on this segment.
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Let us now prove the existence of a y,> u, such that v,= 0, u(u) >0,
U < U,

Let us consider Y'(u) 1in [u,, ») . Evidently r'(u,) >0 . As u
increases between u, and = the function X;a — A, will decrease mono-
tonously by virtue of the above, and

lim (Ma — Asb) = Md — B <0
u-—->c0

Hence, Y’(u) changes sign at some point u = u,> u, , and the function
¥(u) will decrease monotonously for u > ug . It can not emerge beyond the
horizontal asymptote since

)\qA—}uzB
lim Y (u) = 54— 57—+ <0
Im ¥ () = Ry X (o) <
Hence, the existence of the desired point u, has been established.

Let us note that X,a(u,) — Az2(u ; < 0 has been proved In passing. We
therefore have v‘(u,) < O from (O.E . We shall carry out all the subse-
quent disscussion for Jjust u =<y, .

3. Let us prove that
v’ — A <0, u € (ug, u,) (3.1)

Taking account of (1.1), (1.5) and (1.7), compliance with (3.1) in (uo,u, ]
follows from (0.10). By virtue of (0.5) we have

2y (u) < Ay u < (ugy 4]

Now, let us prove that v,(u) < A,y also in (u,,u,] . Let us assume the
opposite, l.e. a u == uy € (u, u,] is found such that u, (u,) = Mu,.

If the mentioned point is not unique, then y_; 1s taken to be the closest
to u; . Then, according to the Lagrange theorem, 8 u; & (uy, u) 18

found such that
Mua — vy (1)
e oM

Upg—u
On the other hand, since o, (ug) < Au; then taking account of (1.2) and

(0.9) we will have
vy (us) — M = (”1a 3 1)<(1/ 1 a)(bz 1b) <0

which is impossible. Now, utilizing (1.2) we obtain
b'v, - }\'2 + b}v1<b,llu —}w’ + bll<0
Hence, aceording to (0.9) we have
v — A <0, uE (uy, u,)

Therefore, (3.1) has been proved.

111’ (us) ==

b, Having determined the function v,(u) on [uy,u,] in such & manner,
and Ug(u) thereby (since 2(y).is known), let us give the determination of
e1(u) . Let us consider (0.73 in the domain X (see Pig.l)

u € [ug udy ey € 0, L (WLL (W) = o /Ay Fup—u
By virtue of the proved properties of the Function v, () , we have
L’ (ug) = 0, L (W) <0, u& (uguyl (4.1)
It 1s also evident that
L (u) > 0, u e [“ev u-a-), L (u+) =0
Let us rewrite (0.8) as

°1'=%‘2'7%). @, a)=alMle+r—u)—nlv (4-2)

Y (1, ¢) = (Agvy — Ayg) acy + (hovy — ahyvg) (u — u,) + (2 — 1) 9194
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Evidently we have o(u, 0,) = O on the upper o,= L(u) and lower o,= O
boundaries of the domain X At inner points and in the interval uy = yp,
0 < 0,< L(ug) we have ofu, 0,) < O Let us consider the behavior of
in the domain X , After transformaticns, we have on the upper boundary
according to (1.7) and (1.1)

P lu, L (0)] = (u, — u) hyvy (@ — 1) -+ 02 (@A /2y — DV >0, u& [uo, uy)

After transformations we have on the lower boundary

ha(u—u,) — va]
D0 0) = Do, — 0 +oil [a @b @) — G =L T o

According to the Cauchy theorem, a u* & (u, #,) may be found such that

Mu—u,)— () _ ha—vy (¥*) _ a(u?)
Mu—u)—rvi(u) M—ovr (u") b (u*)

Hence

P 0= Pa iy — )+ 21 [ (D @) — Tz |7

Now, let u & [u;, u,). Then according to (1.4) and (1.8)

()b () — gy <@ (@b — A4/ BLO

Hence, we have ¢{u, 0) < 0 for uc [u, u,)

For any fixed value of u the function ¢(u, 0,) depends linearly on o0,
and has different signs of the upper and lower boundaries for u & [y, u,).
Hence, & line o,= X(u) is found on
[u, Y, ) utnm t such that

(0. % (u) (the domatn’ K,}

e JK (u the omain X, a
cl> 0 for ¢ € (K (u), L (u)] (the
domnin X,). Bv dently

lim K(u)=0
U~>uy-0
Because 4'< O for uE (uyuy)
and o(u, 0,) < 0, we have o,’< 0
within t, trom (4.2).

Analogously, we have ¢o,’> 0
within X, . Let us consider the
oint O[u,, X(u,)] . Aocording to
f# 2 , this point 1is singular, since
and § = 0O there. We estadb~
lish by & method mentioned in (5],
that the point 0 is a saddle point,
and the slope of the separatrix has
two nonzero values of different sign. Let us consider the nmatrix "]
issuing from the point 0 with a negative slope. Evidontly 0,%(u) wi i
fall into the domain X, upon motion to the right, and cannot intersect 9,=0
in (u,,u,) because of the uniqueness fheorem, nor_ o,= X(u) because X'(u
is finite, a.nd the slope of the integral lines (0.8) is — = for o,=%X u)-o.
Therefore, 0,° (u) drops to the point 0, (4., O) . The latter is also singu-
lar.

Let us prove that o,° (u,) < 0, Let us consider the function of two
variables 2 ) — a'B [A (m 4 1)(z — u,) — 1]
P (ha— Mb)am 4 Ag — Mab + (¢ — 1) by (u —u,)t
Evidently

tor

lim Z(u, m)=0 (v1(u,) =0)
U-+U-0
m—0

lim [M— Mab 4 2—1) bvl] =M—Ma(u,)b(u,)+ [a(u,) —1]b(x,) 01" (u,) =
U-+uU4—0 U—u,
o 4 (e,) [1—0% ()] [Aa— Mb (u,)] >0

a—b
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where v, ‘(u,) from (0.9). Therefore, there exist a 6,> 0 and 6,> O such

that
Z(u, m)<1 foru, — 86, << n<u,and— 6, < m <0 (4.3)

Let us chose an arbitrary value m & (— min {§,, ¢,° (u, — 8,)/ §;},0). It fol-
lows from the condition m > — ¢° (u, — 8,) /6, that

a° (uy — 8) > — mé,

Upon further motion to the right the line ¢,°(u) cannot intersect a seg-
ment of the line o;= m(u —u,) in (u,— 6,, u,). 1In fact, since 0> m >—§&,,
then (4.3) is satisfied. Multiplying (4. 35 by m , we see that the intrinsic
slope of the considered segment m 1s less than the slope of the intergral
line at any of its points mZ(u, m) . Therefore

0 (uy) <m <0
Q.E.D.

Finally, let us continue o,°(u) from the point 0, towards the left.
Let the part of X not in X, and X, be denoted by Zs (Fig.l). Exactly
as has been done in studying the domains EF, and £,, we see that because of
the change in sign of 4’ when u goes through u,, we have o,’< 0 for

¢ € (max {0, X (u)}, L (u))

and we have ¢,’> 0 for ¢ € (0, K(u)) for those u for which X{(y) > 0 .
The line o °(u does not intersect L(u) in X, since the slope of the inte-
gral lines t is zero on L(u) , and L'{u) <0 for u> Y

Let us prove that ¢° (1) <0 for u E [ug, ). By virtue of continui'c a
8 > 0 4is found such that we have L (¥) > K (1) >0 for ue& [u; — u1 .

Evidently the line o,°(u) will turn out to be higher than K(u) for
u e [y — 8, uy)
There remains to prove that 0,°‘< O upon further motion to the left.

Let us assume the opeoaite. This means that at some point Uy € [ue, uy, — 8)
either 0,°’'= 0 or let wuy; be the point closest to u,— & with
the mentioned aingularity 'I‘he case 0,°'= 0 ia impossible since we have
0,°‘< 0 on (ug,u,— 8) , from which G(u’)> ¢,° (u, — 6) > 0, while 0,%{usz) <
< L(up) and, therefore, we have a,? [um ¢y (ug)] =+ O

Let us prove that the case 0,°'m® 18 also impossible. Indeed, if
uUs> Uo , then we have g,'w — e for o= K(u +0 and o,= X(ug) — 0,
where IK u, <w , If Ug=Uo, then X(ug) = — = d 0, uos> .
Therefore, no integral line intersects the line o;= K u) u,) ror
right-to-left motion. Thus, the existence of the solution (0 8?‘701- 0,° (u)
satisfying the fcollowing conditions:

o’ ) =0, " (<0, ue&luyuld, 0<% (W

” (4-4)
u & [uo, u,), ° (u)<—xl—+u+—u, uequg, u,)

18 proved.

Substituting A = 4;, ¢ = ¢,° (u) = (W), v= vy (4 into (0.4), we find
g(u) . It follows rrom (4. 4) cmeﬁ(u)?() for u & [ug, u,l . Horeover, sub-
stituting v = v, (u) and b’= v, '(4) info (0.4) we ovtain /() . Since

L —=AM<L0 >0, 9, >0, uE (uuy)
we obtain J(u) > 0 in the mentioned interval. Because of
(uy) — M0, 1w =0, a”(u)<0, wn(e)=0, v/(u)<0
we obtain J(u,) > 0 from (0.4) by L'Hopital's rule. From v, (uo)=A,
¢ ° (u0) >0, v u3>0 we obtain JS(uo) = O . Let us complete determining the
function J u) én [0, up) by setting it identically equal to zero, and p(y)

also in an arbitrary way under the condition of it being positive and con-
tinous.
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Therefore, 8 y, has been found, and also a fgu) and 8(u) have been
found in [ug, u,) Batisfying the constraints (0.3), for which the system
(0.4), {(0.8) has at least two solutions

A=A, v=1y(), c=¢"()

A=1ky v=1,(u)=0b(uy (W), ¢=cy(u)=a(u e° (1)
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